Acta Crystallographica Section E
Structure Reports Online
ISSN 1600-5368

Héctor Novoa de Armas, ${ }^{\text {a* }}$

Oswald M. Peeters, ${ }^{\text {a }}$ Norbert M. Blaton, ${ }^{\text {a }}$ Camiel J. De Ranter, ${ }^{\text {a }}$ José A. Ruíz Garcia, ${ }^{\text {b }}$ Mayra Reyes Moreno ${ }^{\text {b }}$ and Yoanna M. Alvarez Ginarte ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium, and ${ }^{\mathbf{b}}$ Centro de Química Farmacéutica, Laboratorio de Síntesis Química, Apartado 16042. La Habana, Cuba

Correspondence e-mail:
hector.novoa@farm.kuleuven.ac.be

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.036$
$w R$ factor $=0.103$
Data-to-parameter ratio $=10.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

9 $\beta, 11 \beta$-Epoxy-3 β-hydroxy-5 α-androstan-17-one

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$, the ester linkage in ring A is equatorial. The six-membered rings A and B have chair conformations, but ring C can be better described as a halfchair. The five-membered ring D adopts a 14α-envelope conformation. The $A / B, B / C$ and C / D ring junctions are all trans. The packing of the molecules is assumed to be dictated mainly by intermolecular hydrogen bonds. There is an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction between the O 11 atom of the epoxy group and the methyl C18 group.

Comment

Corticosteroids have demonstrated substantial topical antiinflamatory potency. In particular, betamethasone 17benzoate has been in clinical practice for a long time (Lutsky et al., 1979). The strategy and importance for the synthesis of these compounds have antecedents in similar structures, with anabolic and/or androgenic activity, replacing the positions 9α and 11β with fluorine and hydroxyl, respectively (Shapiro et al., 1987). An example of this is 9α-fluoro- $11 \beta, 17 \alpha$-dihydroxy17α-methyl-4-androsten-3-one (halotestin), a commercial compound 20 times more androgenic and 10 times more anabolic than methyltestosterone. In connection with our studies on the synthesis and characterization of bioactive steroids, the structure of the title compound, (I), could allow us to predict the possibility of presenting/displaying anabolic and/or androgenic properties. The absolute configuration was assumed to be the same as that predicted beforehand from the synthesis route.

(I)

Fig. 1 shows the molecular structure of (I), with the corresponding numbering scheme. The C3-O3 bond of the hydroxy group is equatorially oriented and (-)antiperiplanar to the $\mathrm{C} 3-\mathrm{C} 4$ bond. The presence of OH bonded to C 3 does not disturb the chair conformation in the ring A of the steroid nucleus. Ring A has a highly symmetrical chair conformation with all asymmetry parameters (Duax et al., 1976) below 4.3 (3) ${ }^{\circ}$. The average magnitude of the torsion angles is $55.08(10)^{\circ}$. Ring B displays a chair conformation, as expected (Pfieffer et al., 1985), but this is not the case for ring C, which

Received 27 October 2000 Accepted 27 November 2000 Online 8 December 2000

Figure 1
Plot showing the atomic numbering scheme for the title compound. Displacement ellipsoids are drawn at 50% probability level for non-H atoms. H atoms have been omitted for clarity.
has a half-chair conformation. The five-membered ring D adopts a 14α-envelope conformation (Altona et al., 1968). The $A / B, B / C$ and C / D ring junctions are all trans. Bond distances and valence angles are close to expected values (Honda et al., 1996). The packing of the molecules is assumed to be dictated mainly by intermolecular $\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 17$ hydrogen bonds. There is an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction between the O11 atom of the epoxy group and the methyl C18 group (Taylor \& Kennard, 1982).

Experimental

The synthesis of the title compound is described by Ruíz (1997). Crystals (m.p. 529 K) were grown by slow evaporation from ethanol.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$

$M_{r}=304.41$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.3171$ (3) \AA
$b=10.6462$ (6) \AA
$c=21.0401$ (14) \AA
$V=1639.01(16) \AA^{3}$
$Z=4$
$D_{x}=1.234 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 40
reflections
$\theta=10.5-28.0^{\circ}$
$\mu=0.64 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, colourless
$0.64 \times 0.46 \times 0.28 \mathrm{~mm}$

Data collection

Siemens $P 4$ four-circle diffract-

ometer

$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.615, T_{\text {max }}=0.835$
2214 measured reflections
2031 independent reflections
1987 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.043 \\
& \theta_{\max }=69.1^{\circ} \\
& h=-8 \rightarrow 1 \\
& k=-1 \rightarrow 12 \\
& l=-1 \rightarrow 25
\end{aligned}
$$

3 standard reflections every 100 reflections intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.103$
$S=1.07$
2031 reflections
203 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0626 P)^{2}\right.$ $+0.3007 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 17^{\mathrm{i}}$	0.82	2.02	$2.828(2)$	171
$\mathrm{C} 18-\mathrm{H} 18 B \cdots \mathrm{O} 11$	0.96	2.32	$2.990(3)$	126

Symmetry code: (i) $-\frac{1}{2}-x, 2-y, z-\frac{1}{2}$.

H atoms were calculated geometrically and included in the refinement, but were constrained to ride on their parent atoms. The isotropic displacement parameters of the H atoms were fixed to $1.3 U_{\text {eq }}$ of their parent atoms.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: PLATON (Spek, 1990), PARST (Nardelli, 1983, 1995) and PARSTCIF (Nardelli, 1991).

HNdeA thanks the KU Leuven (Belgium) for an IRO scholarship.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., \& Polidori, G. (1994). J. Appl. Cryst. (1994), 27, 435.
Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Straße 1, Bonn, Germany.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel \& N. Allinger, pp. 271-283. New York: John Wiley.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Honda, T., Fujii, I., Hirayama, N., Ishikawa, D., Kawagishi, H., Song, K. \& Yoo, I. (1996). Acta Cryst. C52, 1550-1552.

Lutsky, B., Berkenkopf, J., Fernandez, X., Monahan, M., Shue, H. J., Tiberi, R. L., Green, M. J. (1979). Arzneim.-Forsch. 29, 1662-1667.

Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1991). PARSTCIF. University of Parma, Italy.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pfieffer, D., Kutschabsky, L., Kretschmer, R. G., Collect, F. \& Adam, G. (1985). Z. Chem. 25, 183-184.

Ruíz, J. A. (1997). "Sintesis del acetato de 5 α-9(11)-androsten-3 β-ol-17-ona a partir de Dieno". Rev. Cub. Farm. Fondo Nacional de Manuscritos Cientificos del Inst. de Docum. Científico Técnico de la Academia de Ciencias de Cuba. (In Spanish.)
Shapiro, E., Gentles, M., Tiberi, R. L. (1987). J. Med. Chem. 30, 1068-1073.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

